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Abstract. We present the derivation of an exact special case solution (for a classical lattice) for
the Su–Schrieffer–Heeger model for the calculation of soliton dynamics intrans-polyacetylene.
Our solution is exact, in the sense that theansatzstate yields an exact solution provided that
the equations of motion for its parameters are obeyed. However, these equations can be solved
only numerically (in principle to any desired accuracy), not analytically. The model is applied
to time simulations of neutral solitons as a function of temperature. We find agreement of the
results of our time simulations with experimental data on the mobility of neutral solitons in the
system. Comparative calculations using the completely adiabatic model indicate that the results
of this model are at variance both with experiment and with those of our model. A simple
consideration of the potential barriers for soliton displacement leads to an overestimation of the
soliton mobility for low temperatures and an underestimation for higher ones. In an appendix
we discuss in some detail the relationship of this exact solution with the|82〉 stateansatzas
presented in our previous paper. We find that theansatz state and the exact solution yield
identical results for lattice momenta, displacements and site occupancies, but differ in a time
dependent phase factor. Thus spectra computed with the dynamics resulting from the exact
solution for the classical lattice on one hand and from theansatzstate on the other would differ
from each other.

1. Introduction

Since the introduction of the soliton model and the Su–Schrieffer–Heeger (SSH) Hamiltonian
[1] (for a recent comprehensive review see the article of Heeger, Kivelson, Schrieffer and Su
[1]) for the explanation of various properties oftrans-polyacetylene (t-PA), it has been shown
that it is necessary to go beyond the simple Hückel type SSH model (see the introduction
of our previous paper (appendix B) and [2–8, 20]). However, for the purpose of describing
just the evolution of the chain geometry and the correspondingα-spin densities in time it
seems to be sufficient to use the SSH model Hamiltonian. For this purpose a reduced value
of the dimerization parameter (see section 2)u0 has to be used to account for the shrinking
of the neutral soliton width upon inclusion of electron–electron interactions.

The computation of the gradient of the electronic energy with respect to the geometrical
degrees of freedom can be done in a time consuming way by a small shift of the coordinate
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of each CH unit [9–12]; however, the use of exact analytical gradients is more efficient
[13]. In t-PA the soliton movement is restricted to less than 50 C–C bonds [2] probably
due to impurities, crosslinks andcis-PA segments [14] or interchain interactions. Thus an
open chain seems to be a more realistic model than a cyclic one. Details about the different
approximations for the calculation of electronic wave functions in the framework of the
Pariser–Parr–Pople (PPP) Hamiltonian, as well as about work on the influence of impurities
and interchain interactions on soliton properties can be found in [15–20].

Since in all our studies using the PPP Hamiltonian we found a rather small soliton half
width of about two to three lattice sites the question of the influence of quantum effects on
soliton dynamics in the lattice arises (see also the review by Heegeret al [1]). In [71] we
have derived equations of motion foransatz states which include quantum effects in the
lattice. Details of earlier studies on this problem intrans-PA and in the Davydov model for
proteins can be found in [21–36] and a short discussion in the introduction of [71].

The application of Heller’s formula for the calculation of vibrational spectra from
dynamical simulations [37] is briefly discussed in section 2.4. A discussion on the
possibilities of applying our methodology as a general concept in theoretical materials
science to predict properties of charge carriers in conjugated polymers together with
examples is given in [36] (second paper). Further we want to mention here thatab initio
density functional methods (see for example [38] for semiempirical applications, [39] for
applications to polyparaphenylene) can be used to study the stability of such polymers
against oxidation in air theoretically. Examples of some of the different functionals
developed can be found in [40–45].

The importance of conjugated polymers arises from the fact that they become electric
conductors upon doping, with conductivities up to the range of copper (synthetic metals).
Further, they are easily processible. The conductivity is usually attributed to a number of
different nonlinear quasi-particles as charge carriers, for example, charged solitons, polarons
or bipolarons, depending on the nature of the ground state of a given polymer. In some
of the materials even the nature of these nonlinear excitations is still controversial. Our
general aim is to develop a methodology (see [36], second paper), which is able to produce
quantitatively correct answers to questions about form, stability and the motion of such
quasi-particles, without using a large amount of computer time or memory. In this way
it should be possible to reach theoretical predictions about useful candidates for synthetic
metals. Importantab initio investigations on the search for low-gap polymers (in different
directions regarding the chemical structure) were reported by Bakshiet al [46–51]. For a
comprehensive review of the large amount of work performed by the group of Ladik on this
topic see [52]. More complete lists of references on this topic, where many more groups
are active, can be found in the review of Heeger, Kivelson, Schrieffer and Su (HKSS) [1]
and in our paper ont-PA [36].

The present paper is structured as follows. In section 2.1 we describe briefly the general
idea of solitons intrans-polyacetylene and the Su–Schrieffer–Heeger Hamiltonian for their
description. In section 2.2 we derive a special case solution of this model for a classical
lattice. We show in detail that ouransatz yields an exact solution, provided that the
equations of motion for its parameters are obeyed. However, these equations can be solved
only numerically, in principle to any desired accuracy. In section 2.3 we describe briefly
the procedure for a completely adiabatic treatment, while in section 2.4 we outline how
vibrational spectra can be calculated from the time simulations obtained with our method.
We point out that with the adiabatic treatment such spectra cannot be calculated. Calculations
of spectra along these lines will be the subject of a forthcoming paper. In section 3.1 we
present the application of our solution to simulate the temperature dependence of the time
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evolution of a neutral soliton initially at rest. Section 3.2 deals with the corresponding
calculations using the completely adiabatic model. We show that with this model results
are obtained which depend heavily on the size of the time step used and which are at variance
with experiments and with those calculated with our solution. The results are summarized
and discussed in section 4. In appendix A we derive in detail the equations of motion for the
|82〉 stateansatz[71] which is the multi-quantum analogue of Davydov’s|D2〉 state applied
to fermions instead of bosons (which makes no difference in one-particle models like the
SSH one). Our methodology is outlined here on the example of the prototype of the synthetic
metals, namely thetrans-polyacetylene (t-PA). However, we point out that it is not restricted
to t-PA. A rather similar set of equations of motion is discussed extensively by Kopidakis
et al [53], however, for a Hamiltonian which contains the electron–phonon coupling not in
the first-neighbour part, but as an on-site term. This Hamiltonian is completely identical to
Davydov’s electrosoliton model and cannot be applied to polyacetylene, where the electron–
phonon coupling is definitely contained in the resonance integrals, while the constant on-site
terms are usually shifted to zero. Due to the fact that results derived from an electrosoliton
model and those from an off-site electron–phonon coupling usually differ completely, the
results presented by Kopidakiset al [53] cannot be compared to ours.

2. Method

2.1. The Su–Schrieffer–Heeger (SSH) Hamiltonian

One of the basic facts which had to be explained (see [1] for example) is the presence of an
EPR (electron paramagnetic resonance) line with reduced width in undoped samples. This
is attributed [1] to the presence of mobile spins (approximately one spin per 3000 C–H
units) in the pristine material. Further we have a spinless charge transport in lightly
doped (<0.06 e/C–H) samples and in photoconducting ones. In their famous theory Su,
Schrieffer and Heeger (SSH) [1] attributed these features to spinless charged solitons as
charge carriers. Their concept of solitons is based on the fact thatt-PA exhibits two
energetically degenerate groundstates, having different bond alternation phases A and B.
With the help of the local displacementsui at each site (projected on the polymer axis),
phase A can be described byui = (−1)i+1u0 and phase B byui = (−1)iu0, whereu0 is the
so-called dimerization. In factu0 is the bond alternation R>−R< (larger and smaller C–C-
bond lengths), projected on the polymer axis. The experimental value foru0 is 0.026Å (see
[54, 55] for theoretical calculations and references to experiments therein). SSH introduced
the staggered coordinatesψi = (−1)i+1ui , such that the bond alternation phase A can be
described byψi = u0 and phase B byψi = −u0. The soliton is then the border between
segments of the chain having different bond alternation phases. From SSH theory, which in
principle is nothing but a Ḧuckel model extended by a term describing the electron–phonon
interaction, in the continuum limit it follows [1] that such a soliton centred at a siteN0 with
a half-widthL (in lattice sites) is described by a geometry (i denotes the lattice site)

ψi = u0 tanh[(N0− i)/L]. (1)

From SSH theory in the continuum limitL = 7 can be derived. A brief explanation of the
SSH model and of the method to compute dynamics from this model are given below, while
the application ofab initio and PPP methods is described in [56–61], with special emphasis
on the problem of spin contaminations in UHF (unrestricted Hartree–Fock) calculations.
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The Su–Schrieffer–Heeger Hamiltonian (SSH) [1] is given by

Ĥ ′ =
∑
n

{
[β0− (ûn − ûn+1)α]

∑
σ

(ĉ+nσ ĉn+1,σ + ĉ+n+1,σ ĉnσ )

+ p̂
2
n

2M
+ 1

2
K(ûn − ûn+1)

2− A(ûn − ûn+1)

}
. (2)

In (2) β0 = −2.5 eV is the transfer or resonance integral between two neighbouring C–H
groups;α = 4.8 eV Å−1 is the electron–phonon coupling constant. The values of these
constants [1] are determined such that an SSH (Hückel) calculation on an infinite, ordered
and ideally dimerized chain results in aπ -band width of 10 eV and a fundamental gap of
roughly 2 eV.M = 13 mp (in ordered chains) is the mass of a C–H unit,K is the spring
constant due to theσ electrons between two neighbouring units.K and the linear potential
constantA are determined such that the ideally dimerized chain shown in figure 1 represents
the equilibrium geometry of the chain [26]. As shown in detail in appendix F of [71], in
the adiabatic approximation the C–H units are considered as classical particles moving in
the potential created by theπ electrons and harmonic terms due to theσ electrons, which
form a system of localized C–C bonds, underlying the delocalizedπ system.

Figure 1. Sketch of the geometry and the coordinates we use for our simulations ontrans-
polyacetylene.

In figure 1, theun are the projections of the displacements of the C–H units from the
equidistant chain onto the polymer axis,a0 is the lattice constant of the equidistant chain
andy0 is the distance of the C–H units from the chain axis, which is kept constant in the
SSH model.a0 and y0 are determined such that the long C–C bond in equilibrium has a
length of 1.450Å, that the short C–C bond has one of 1.366Å and that the C–C–C angle
has a value of 123.9◦, a geometry which was obtained with the help of correlatedab initio
calculations on the infinite chain by Suhai [62–65].ûn is the operator of the displacements
of the units parallel to the chain axis from their positions in the equidistant chain, andp̂n the
corresponding momentum operator. The operatorĉ+nσ (ĉnσ ) creates (annihilates) an electron
with spin orientationσ at unitn. The Fermi anti-commutation relations for these operators
are obtained from,

ĉ+|0〉 = |1〉 ĉ+|1〉 = 0 ĉ|0〉 = 0 ĉ|1〉 = |0〉 (3)

as

{Â, B̂} ≡ ÂB̂ + B̂Â
{ĉnσ , ĉ+n′σ ′ } = δnn′δσσ ′ {ĉnσ , ĉn′σ ′ } = {ĉ+nσ , ĉ+n′σ ′ } = 0. (4)
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2.2. Exact solution in the classical lattice limit

Exact solutions for the SSH Hamiltonian are not available. However, one can be derived in a
special case, namely the limit of a completely classical lattice, i.e. replacing the momentum
and displacement operators by real numbers. Since in Davydov soliton theory [66, 67] in
proteins such a solution turned out to be extremely helpful, for example in judging the
validity of temperature models, we want to give such an exact solution also for the SSH
case.

With a classical lattice the SSH Hamiltonian is given by,

Ĥ =
∑
j

Ĥ (j)+HL(t)

Ĥ (j) =
∑
n

{β0+ α[un+1(t)− un(t)](ĉ+nj ĉn+1,j + ĉ+n+1,j ĉnj )}

HL(t) =
∑
n

{
p2
n(t)

2M
+ K

2
[un+1(t)− un(t)]2+ A[un+1(t)− un(t)]

}
. (5)

Note that an index in brackets, like (j ), is an electron index, not an orbital index, and
includes both spin orientations. The constantsK andA are determined by a conventional
SSH calculation as described in appendix F of [71]. The mass of a C–H unitM has to be
determined in our eV ps−1 Å−1 system of units. For this Hamiltonian the time-dependent
Schr̈odinger equation has to be solved,

ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉. (6)

SinceHL(t) is a simple time-dependent real function we can write our state|ψ〉 as,

|ψ〉 = e−i/h̄G(t)|φ〉
G(t) ≡

∫ t

0
HL(t

′) dt ′ ⇒ G(0) = 0

⇒ ∂G(t)

∂t
= HL(t). (7)

Insertion into the Schrödinger equation and multiplication of both sides with exp[(i/h̄)G(t)]
yields the equation for the electronic part of the state:

ih̄
∂

∂t
|8〉 =

∑
j

Ĥ (j)|8〉 |ψ〉 = χ(t)|8〉

χ(t) = e−i/h̄G(t) = e−i/h̄
∫ t

0 HL(t
′) dt ′ . (8)

For this electronic part we use asansatza Slater determinant built ofν one-particle states
for ν electrons (note that in the one-particle SSH case a simple product of one-particle
functions would yield the same results):

|8〉 = 1√
ν!

∑
P

(−1)pP̂
ν∏
j=1

|ϕj (j)〉. (9)

The symbols indicate that in each term of the determinant the sequence of orbitals|ϕj 〉 in
an individual product is always the same. The permutation operatorP only changes the
sequence of the electrons in their distribution among the orbitals. The two sides of the
Schr̈odinger equation thus yield (electron index in brackets),

ih̄
∂

∂t
|8〉 = 1√

ν!

∑
P

(−1)pP̂
ν∑
j=1

[
ih̄
∂

∂t
|ϕj (j)〉

] ν∏
j ′=1
j ′ 6=j

|ϕj ′(j ′)〉
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j

Ĥ (j)|8〉 = 1√
ν!

∑
P

(−1)pP̂
ν∑
j=1

[Ĥ (j)|ϕj (j)〉]
ν∏

j ′=1
j ′ 6=j

|ϕj ′(j ′)〉

⇒ 1√
ν!

∑
P

(−1)pP̂
ν∑
j=1

[
ih̄
∂

∂t
− Ĥ (j)

]
|ϕj (j)〉

ν∏
j ′=1
j ′ 6=j

|ϕj ′(j ′)〉 = 0. (10)

The last equation can only be solved if,

ih̄
∂

∂t
|ϕj (k)〉 = Ĥ (k)|ϕj (k)〉 (11)

for all occupied (others do not exist here) orbitalsj and all electronsk, or without loss of
generality,

ih̄
∂

∂t
|ϕj 〉 = Ĥj |ϕj 〉

Ĥj =
∑
n

{β0+ α[un+1(t)− un(t)](ĉ+nj ĉn+1,j + ĉ+n+1,j ĉnj )} (12)

where the creation (annihilation) operators create (annihilate) an electron in spin orbitalj

at siten and obey the usual anti-commutation relations for fermions. This equation can be
solved by expansion in a series of basis states at sitesn:

|ϕj 〉 =
∑
n

cnj (t)ĉ
+
nj |0〉. (13)

Using the anti-commutation relations we obtain,

Ĥj |ϕj 〉=
∑
n

{[β0+ α(un+1(t)− un(t))]cn+1,j (t)+[β0+ α(un(t)− un−1(t))]cn−1,j (t)}ĉ+nj |0〉

ih̄
∂

∂t
|ϕj 〉 =

∑
n

ċnj (t)ĉ
+
nj |0〉. (14)

Thus ouransatzsolved the Schr̈odinger equation exactly if the time dependent coefficients
obey,

ih̄ċnj = βn(t)cn+1,j + βn−1(t)cn−1,j

βn(t) = β0+ αn(t) αn(t) = α[un+1(t)− un(t)]. (15)

Note that we use open chains, i.e., we assume implicitly that forn = N the first term on
the right-hand side is not present, while forn = 1 the second term vanishes. Now we can
compute a Hamiltonian functionH(t):

H(t) = 〈ψ |Ĥ |ψ〉 = 〈ψ |
∑
j

Ĥj |ψ〉 + 〈ψ | ψ〉HL(t). (16)

From the equations for thecnj (t) it can be easily shown that they are norm conserving, i.e.,
〈ψ(t) | ψ(t)〉 = 〈ψ(0) | ψ(0)〉 = 1 if the wave function is initially normalized. Further,
it can be shown that the equations are overlap conserving, i.e.〈ϕj (t) | ϕj ′(t)〉 = 〈ϕj (0) |
ϕj ′(0)〉 = δjj ′ if the orbitals are initially orthonormal. Thus,

H(t) = χ(t)χ∗(t)
∑
j

〈ϕj |Ĥj |ϕj 〉 +HL(t) =
∑
j

〈ϕj |Ĥj |ϕj 〉 +HL(t). (17)

The first term follows from the Slater–Condon rules for expectation values of a one-particle
Hamiltonian between two identical Slater determinants built from orthonormal spin orbitals.
Until now summations overj were running over all spin orbitals. However, since electrons
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of opposite spins always occupy the same spatial orbital, we can sum from now on over
orbitals and multiply the respective term with an occupation numberoj (0, 1 or 2):

H(t) =
∑
j

oj 〈ϕj |Ĥj |ϕj 〉 +HL(t). (18)

Evaluation of the expectation values and definition of the density matrix,

Pnm ≡
∑
j

oj cnj c
∗
mj (19)

yields,

H(t) =
∑
n

[βnPn+1,n + βn−1Pn−1,n] +HL(t). (20)

Now with the help of Hamilton’s equations we obtain the equations of motion for the lattice:

ṗn = −∂H(t)
∂un

u̇n = ∂H(t)

∂pn
= pn

M

ṗn = 2α{Re [Pn,n+1](1− δnN)− Re [Pn,n−1](1− δn1)} − ∂HL(t)
∂un

. (21)

Differentiation of the lattice Hamiltonian yields our final set of equations,

ṗn = 2α{Re [Pn,n+1](1− δnN)− Re [Pn,n−1](1− δn1)}
+K[(un+1− un)(1− δnN)+ (un−1− un)(1− δn1)] + A(δn1− δnN)

u̇n = pn/M
ih̄ċnj =

∑
nn′
hnn′cn′j (22)

where,

hnn′(t) = βnn′ + αnn′(t)
βnn′ = β0[δn′,n+1(1− δnN)+ δn′,n−1(1− δn1)]

αnn′(t) = αn(t)δn′,n+1(1− δnN)+ αn−1(t)δn′,n−1(1− δn1)

αn(t) = α[un+1(t)− un(t)]. (23)

The actual procedure we use for the numerical solution of these equations is given in
appendix G of [71]. Since we have a Hamiltonian system atT = 0 K with a time
independent Hamiltonian operator it can be easily shown that the total energy is a conserved
quantity (forT = 0 K). The total state vector is,

|ψ〉 = χ(t) 1√
ν!

∑
P

(−1)pP̂
ν∏
j=1

[∑
n

cnj (t)ĉ
+
nj |0〉

]
. (24)

Note, that the result is identical to the result from the so-called|82〉 ansatz [71] state
(see the appendix for details), besides a time-dependent phase factor which is unimportant
for conventional expectation values, but important if spectra should be computed. The
completely adiabatic model would be obtained if we assumed the eigenvectors and
eigenvalues for the description of the electrons to be constant during a time step.

Note that in the limit of short times the lattice can be assumed to be slow as compared
to the electrons. Thus one can set the time derivative of the lattice momenta equal to zero
and insert the resulting relations for the lattice displacements into the equations for the
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electrons. In this way one obtains a set of coupled discrete nonlinear Schrödinger equations
(DNLS) for the electrons:

ih̄ċnj = β(cn+1,j + cn−1,j )− 2α2

K

∑
j ′
oj ′ {Re [cnj ′c

∗
n+1,j ′ ]cn+1,j − Re [cnj ′c

∗
n−1,j ′ ]cn−1,j }. (25)

Interestingly, this set of equations is mathematically identical to the corresponding DNLS
which can be obtained in Davydov theory for the dynamics of amide-I vibrations in proteins
coupled to the lattice, provided that more than one vibrational quantum is studied. However,
there the physical meaning of the variables and parameters is a different one.

2.3. The adiabatic treatment

Since the adiabatic treatment of the dynamics is documented in the original papers by SSH
[1] as well as in appendix F of our paper [71] we do not want to repeat the equations here.
It is enough to mention that in this case the electrons are considered to be fast enough
to follow the lattice dynamics instantaneously. Thus at each time step the Hamiltonian
matrix is formed from the respective geometry of the chain and diagonalized. From the
molecular orbital (MO) coefficients obtained in this way the gradient of the electronic energy
with respect to the lattice geometry can be computed analytically. With the help of these
gradients the lattice geometry for the next time step is calculated. Note that this procedure is
computationally much less demanding than our method which follows the electron dynamics
explicitly. However, the simple diagonalization of the electronic Hamiltonian matrix at each
time step yields MO coefficients with an undefined phase, i.e. given an MO to any one of
the eigenvalues of the Hamiltonian, then the same MO multiplied with any arbitrary phase
factor also solves the Hamiltonian with the same eigenvalue. This implies that the adiabatic
procedure is unable to yield the time development of the phase factors of the electronic
wave functions. These phases, however, are of extreme importance if the calculation of
spectra from the dynamics is desired as we show below.

2.4. Vibrational spectra

We want to conclude this section by showing how vibrational spectra can be calculated
from dynamic simulations. The procedure we are using at present is based on Heller’s [68]
method, which consists of the transformation of a delta-function in the frequency domain
into the time domain, and the application of closure properties of the states of a system.
The absorption cross section is given by,

σ(ω)− ω
∫ ∞

0
Re [ei/h̄(Ei+h̄ω)tS(t)] dt (26)

whereEi simply sets the energy scale, i.e., if we perform an excited state simulation in the
SSH model and the excitation energyEi (i for initial) is simply the difference of the energy
levels between which the initial vertical excitation takes place.S(t) is the autocorrelation
function,

S(t) = 〈ψ(0) | ψ(t)〉 (27)

which in our case is given by,

S(t) = e−i/h̄
∫ t

0 HL(t
′) dt ′ 〈1(0) | 1(t)〉

|1(t)〉 = 1√
ν!

∑
p

(−1)pP̂
ν∏
j=1

|ϕj (t)〉. (28)
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The overlap between the two Slater determinants can be formulated as the determinant of a
matrix S(t) which, however, has to be formed from spin orbitals not from orbitals. This is
most easily verified by computing explicitly the overlap between two 2× 2 or 3× 3 Slater
determinants. The matrixS(t) is defined by its elements. Thus we obtain,

S(t) = χ(t) detS(t)

Sij (t) = 〈ϕi(0) | ϕj (t)〉 =
∑
n

c∗ni(0)cnj (t)

χ(t) = e−i/h̄
∫ t

0 HL(t
′) dt ′

HL(t) =
∑
n

[
p2
n

2M
+ K

2
(un+1− un)2+ A(un+1− un)

]
. (29)

Currently we are using this formalism to compute photoinduced vibrational spectra from
excited state dynamics. It is completely obvious that for the calculation of the matrix
elementsSij (t) the time dependence of the phases of the MOs is of utmost importance,
which cannot be obtained with an adiabatic treatment or density matrix methods.

Further, with the SSH Hamiltonian for the calculation of the dynamics, we used the
geometries obtained as functions of time in PPP/MP2 (many-body perturbation theory of
second order in Moeller–Plesset partitioning) calculations to calculate the electronic spectra
with the help of the random phase approximation. These were averaged over time to obtain
spectra comparable to experiment. The results are the subject of another paper [69].

3. Results and discussion

3.1. Temperature dependence calculated with our exact solution

Temperature is included in our treatment via Langevin equations (see appendix F of [71])
for the lattice. Since Langevin equations are strictly correct only for classical systems, our
results for very low temperature (T = 10 K) are approximative. We had to use a very small
time step size of 0.01 fs, because the electron dynamics are much faster than the lattice
dynamics. In previous, adiabatic simulations it was always assumed, that the electrons
follow the lattice motions instantaneously, thus a time step of 1 to 1.25 fs was sufficient.
Since in our study we want to simulate results including electron–electron interactions
(Pariser–Parr–Pople, PPP model) accurately as possible with our exact SSH solution, we
have to chooseβ0 = −2.5 eV andα = 4.8 eV Å−1. The value ofu0 has to be chosen such
that it is smaller than the experimental one, because from PPP and MINDO (all-valence-
electron semiempirical method) calculations it is known that the soliton widthL is roughly
equal to three lattice sites. However, the SSH Hamiltonian with experimentalu0 values
gives soliton half-widths around seven lattice sites. To obtain the desired soliton width of
three sites, we usedu0 = 0.1 Å. We placed initially a soliton of tanh shape withL = 3
and centred atN0 = 26 in a neutral chain of 51 units. The initial values for thecnj were
obtained from a conventional static SSH calculation on the system with our initial geometry
(optimized neutral soliton geometry in the centre of the chain). Then we performed time
simulations using the above-derived formalism at different temperatures, namelyT = 0, 10,
50 and 100 K. The algorithm for the solution of the electronic part of the equations of motion
is described in some detail in appendix G of [71], while the time evolution of the lattice
coordinates was calculated with a simple one-step procedure. In some of the calculations
we used two different time step sizes, namely 0.01 fs (200 000 time steps) and 0.001 fs
(2 000 000 time steps), respectively. In the latter calculations the input and calculated
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parameters were: chain lengthN = 51, resonance integralβ0 = −2.5 eV, electron–phonon

coupling strengthα = 4.8 eV Å
−1

, equilibrium dimerizationu0 = 0.1 Å, spring constants

for the C–Cσ bondsK = 16.9539 eVÅ
−2

, linear potential termA = −5.676 88 eVÅ
−1

,
time constant of the heat bath0 = 1.095 63 ps−1 and half width of the Gaussian distribution

for the random forcesσ = 2.562 33(eV Å
−1
)2 (10 K). Figure 2 shows the kinetic energy

of the lattice (solid lines) together with the error in total energy (dashed lines) as a function
of time for a time step of 0.01 fs (left panel) and for a time step of 0.001 fs (right panel)
at T = 0 K. From the figure it is completely obvious that in case of the larger time step
size the error in total energy is increasing with time, and one could assume that the larger
time step is not well suited for our investigation. However, if we look at the time evolution
of the α-spin density as function of site and time (in figure 3) we see that the picture is
completely the same in both calculations (thus we show only one of them). Since the chain
geometry is optimized, the only (fast) change in the course of time is in the phase of the
electronic wave function. As figure 4 indicates, also the geometry as a function of site and
time is identical for the two time step sizes.

Figure 2. Kinetic energy of the lattice (solid lines) together with the error in total energy (dashed
lines) as functions of time for a time step of 0.01 fs (left panel) and for a time step of 0.001 fs
(right panel) atT = 0 K.

However, to be sure that we can use the larger time step we performed a comparative
investigation with both time step sizes also at a temperature of 50 K, since the small changes
in the course of time at 0 K might give misleading results. In figure 5 we show again the
energies in the same way as above but now forT = 50 K. It is obvious that the differences
between the two time step sizes are not very pronounced in this case again. In figure 6
we display the quantityA(t), which is the time average of the lattice kinetic energy up to
time t divided by(N −1)kT /2 (k is Boltzmann’s constant). When the system is in thermal
equilibrium this value should approach unity. Our results show that within the simulation
time we just drive the system into thermal equilibrium, where the approach ofA(t) to unity
is somewhat better in the case with the smaller time step size. However, the differences
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Figure 3. α-spin density as function of timet and siten for our model as described in the text,
calculated with a time step of 0.01 fs.

in A(t) are not very pronounced in the two cases and therefore can serve as a further
indication that we can safely use the larger time step size and thus save a considerable
amount of computer time.

More interesting than these quantities would be definitely the coordinates as a function
of time; however, in such a plot one does not see too much because the thermal fluctuations
in the coordinates completely cover up the soliton movement. However, we can plot again
the spin density as a function of time and site for the two cases, which is done in figure 7.
Here at first sight the results look completely different for the two time step sizes. However,
a closer look at the two plots reveals clearly that the mobility of the soliton is the same in
both cases, but the restricted movement occurs in the lower panel to the other side of the
chain and somewhat later, which is not a basic differences for our qualitative conclusions.
Therefore we decided to perform the other two simulations at 10 and 100 K with the larger
time step due to the tremendous amount of computation time necessary for the smaller
one. In figure 8 we show the energetics andA(t) for the case of 10 K, while figure 9
shows the corresponding spin density. We see from figure 8 thatA(t) does not approach
exactly unity, which, in our opinion, indicates that the use of the Langevin model at low
temperatures such as 10 K is somewhat problematic; however, the overshooting ofA(t)

over unity is not tremendous. The spin densities shown in figure 9 indicate clearly that
some very small shifts in the soliton position occur just as the experimental results suggest:
soliton mobility is changing gradually from immobile to free movement between 10 and
100 K. Now as a last step we have to examine the results for 100 K which are shown
in figures 10 and 11. ObviouslyA(t) approaches again a value slightly larger than unity.
However, we have seen from theT = 50 K case that this might be a consequence of the
time step size, while it does not affect other quantities like the spin densities which are
the important ones. Figures 10 and 11 indicate clearly that the soliton is freely mobile at
T = 100 K. The thermal fluctuations excite the soliton initially at rest to a moving one
which crosses the complete chain within the simulation time. This behaviour of our model
with increasing temperature is in complete agreement with experiment [1], and shows that
besides its simplicity the model seems to be rather close to reality. However, if quantities
like electronic excitation spectra should be computed we admit that our simple essentially
Hückel type model must be augmented by electron–electron interaction and consequently
correlation corrections have to be included in the one-particle picture. However, we discuss
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Figure 4. Time evolution of the staggered lattice coordinates divided by the equilibrium
dimerization as a function of lattice site for the model as described in the text atT = 0 K
for a time step of 0.01 fs (upper panel) and 0.001 fs (lower panel).

these issues in another publication [69]. The corresponding results at 100 K, but calculated
with the smaller time step size for 2 ps simulation time (calculated on the IBM Risc) we
do not show here. In this case within the simulation time of 2 psA(t) does not even
reach unity. Again the onset of soliton motion is delayed, as observed also in the 50 K
case. However, here the onset of motion does not even occur within the simulation time of
2 ps. However, with the help of an ALPHA Station 500/333 MHz workstation from Digital
which performs much better than the IBM Risc used for all calculations described above we
could perform a calculation forT = 100 K through a larger simulation time. The IBM Risc
needed, as mentioned, 725 CPU hours calculation time for 1 ps simulation time, while the
ALPHA Station uses only 100 CPU hours for the same 1 ps simulation time. The results
of a 4 pscalculation (18.4 CPU days on the ALPHA Station) atT = 100 K are shown in
figures 12 and 13. The results indicate clearly that after a longer simulation time first of
all A(t) reaches a value slightly larger than 1. Note thatA(t) reaches unity exactly only
in a completely classical Langevin system where all fluctuations in kinetic energy are fully
at random. Since our system is not entirely classical and there exists a non-random part of
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Figure 5. Kinetic energy of the lattice (solid lines) together with the change in total energy due
to temperature effects (1E; dashed lines) as functions of time for a time step of 0.01 fs (left
panel) and for a time step of 0.001 fs (right panel) atT = 50 K.

Figure 6. The quantityA(t), which is the time average of the lattice kinetic energy up to timet

divided by(N − 1)kT /2 (k is Boltzmann’s constant) forT = 50 K as a function of time, using
a time step of 0.01 fs (left panel) and one of 0.001 fs (right panel).

the kinetic energy after the soliton starts to move (due to its motion)A(t) can be expected
to end up around unity but not exactly atA = 1. Secondly, the soliton starts to become
completely mobile after about 3 ps. The mobility is indicated by the fact that the soliton is
able to reach the chain end completely at 100 K, while it became stuck before the actual



2644 W Förner

chain end in the 50 K simulation. We only want to mention here, in order to indicate the
correctness of our programs, that during the first 2 ps simulation time on the ALPHA Station
we obtained the same results as on the IBM Risc. We want to point out the fact that within
our model the qualitative conclusions about the mobility of the neutral soliton as function
of temperature remain the same for the two time step sizes considered. The only difference
is the larger delay time until soliton motion sets in in the case of the smaller time step size
and the different directions of the soliton motion. However, since temperature effects are
described by random forces and a dissipation term, the latter difference is not surprising
or of physical importance. Since the system is symmetric with respect to the centre of the
chain, no direction of soliton movement is physically preferred. Only the motion as such is
of importance and can be measured. The longer delay time of soliton movement also is of no
importance, since the system anyway has to be given time for thermal equilibration before
conclusions can be drawn. The final conclusion from the discussed set of calculations is
that starting from 10 K the soliton mobility gradually increases and from 100 K the soliton
is completely mobile, only restricted by the limited chain length. This agrees completely
with the results of DNP (dynamic nuclear polarization) experiments (see [1] and references
therein). Note that vibrational spectra could be calculated from the simulations presented
in this work if one used the formalism presented in 2.4

3.2. Temperature dependence calculated with the adiabatic model

In the adiabatic model we have the advantage that the calculations are much less demanding
with regard to computation time. However, the adiabatic model, as mentioned above, has
the drawback that the time dependent phases at the molecular orbitals cannot be calculated,
and thus vibrational spectra as described in 2.4 cannot be obtained from adiabatic dynamics.
We want to present briefly the results of our adiabatic simulations here as well, because
it might be possible that the mobility of the solitons could be described equally well with
both methods, ours and the adiabatic one. Temperature effects are included in the adiabatic
calculations in the same way as in our model, namely by the introduction of random forces
and dissipation in the lattice equations. Thus the values of the parameters are the same as in
the previous calculations. Only the half-width of the Gaussian distribution for the random
forces,σ , depends on the size of the time step. Thus for time steps of 0.01 fs and 0.001 fs
σ has the same values as stated in the last paragraph. For the time steps ofτ = 1 fs, 0.1 fs,
0.01 fs, 0.001 fs and temperaturesT = 10 K, 50 K, 100 K the half-widths are given by

σ = 2.562 33× 10−4 fs

K

T

τ

(
eV

Å

)2

. (30)

In figure 14 we show the energetics of the simulations, especially the error in total
energy atT = 0 K to get a feeling for what time step size is necessary in the adiabatic
case to obtain correct results. Obviously, in agreement with previous experience, already
for a time step of 1 fs the error in the total energy is sufficiently small in an adiabatic
simulation to obtain reliable results, despite the simple one-step procedure used in the time
simulation. For the smaller time steps the error is reduced drastically. However, the time
evolution of theα-spin density for the different temperatures and time steps as shown in
figure 15 indicates clearly that in the adiabatic model even the qualitative results concerning
the mobility of the solitons as function of temperature do not show a consistent change when
the time step size is reduced (we show only the cases withT = 10 and 100 K; the 50 K
case shows a similar inconclusive behaviour). Even with the smallest time step we see
that the mobility at lower temperatures is overestimated, although less pronounced than for
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Figure 7. α-spin density as a function of timet and siten for our model as described, calculated
with time steps of 0.01 fs (upper panel) and 0.001 fs (lower panel).

the larger ones. However, for even smaller time steps (necessary here to obtain consistent
results, while with our model, as we have seen above, already a time step of 0.01 fs would
be sufficient) one would have to think about using a larger numerical precision than in
all our calculations (double precision: 64 bits per word) and then the calculations would
become even more demanding than in those for our model. Thus we have to conclude from
these results that the adiabatic model, although it saves a tremendous amount of computation
time (in comparative calculations using the two models with the same time step size) is not
able to reproduce the experimental facts on soliton mobility with a reasonable time step
size. Thus in addition to the problem that the adiabatic model is unable to produce the time
dependence of the phases at the molecular orbitals, it could yield also misleading results
about the dynamics of the solitons as function of temperature.
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Figure 8. Kinetic energy of the lattice (solid line) together with the change in total energy due
to temperature effects (1E; dashed line) as functions of time (left panel) and the quantityA(t),
which is the time average of the lattice kinetic energy up to timet divided by (N − 1)kT /2
(k is Boltzmann’s constant) forT = 10 K as a function of time (right panel), using a time step
of 0.01 fs.

Figure 9. α-spin density as a function of timet and siten for our model as described in the
text, calculated with a time step of 0.01 fs at 10 K.

4. Conclusion

The discussion given above clearly indicates that our method is able to reproduce
experimentally known facts about soliton mobility as function of temperature intrans-
polyacetylene. However, what this discussion also shows clearly is that these calculations
need a tremendous amount of computation time, also because we need to do all the
calculations in double precision (64 bits per word). We have performed them on an IBM
RISC 6000 320H (25 MHz) workstation and a calculation with a time step of 0.001 fs
over 2 ps needed 86 990 CPU minutes (=1450 CPU hours= 60.4 CPU days), while the
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Figure 10. Kinetic energy of the lattice (solid line) together with the change in total energy due
to temperature effects (1E; dashed line) as functions of time (left panel) and the quantityA(t),
which is the time average of the lattice kinetic energy up to timet divided by (N − 1)kT /2
(k is Boltzmann’s constant) forT = 100 K as a function of time (right panel), using a time step
of 0.01 fs.

Figure 11. α-spin density as a function of timet and siten for our model as described in the
text, calculated with a time step of 0.01 fs at 100 K.

calculation with the larger time step of 0.01 fs required a tenth of that time, still about 6 days
of pure CPU time. We found, on the other hand, that an ALPHA Station 500/333 MHz
is by roughly a factor of seven faster than the IBM Risc and enabled us to carry out the
calculation for 100 K and the smaller time step for a simulation time of 4 ps. Further
we have found that the adiabatic model, which is widely in use and much less tedious to
calculate numerically, is not able to reproduce the experimental facts on the dynamics as
a function of temperature correctly with reasonable time step sizes (0.001 fs is still not
sufficiently small). On the contrary, the results obtained with the adiabatic model change
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Figure 12. Kinetic energy of the lattice (solid line) together with the change in total energy
due to thermal effects (1E; dashed line) as functions of time (left panel) and the quantityA(t),
which is the time average of the lattice kinetic energy up to timet divided by (N − 1)kT /2
(k is Boltzmann’s constant) forT = 100 K as a function of time (right panel), using a time step
of 0.001 fs for a simulation time of 4 ps calculated with an ALPHA Station.

Figure 13. α-spin density as a function of timet and siten for our model as described in the
text, calculated with a time step of 0.001 fs at 100 K (4 ps calculation done on an ALPHA
Station).

even qualitatively when the time step is reduced. Further, neither the adiabatic model nor
a density matrix method as described in [70] are able to yield the time dependence of the
phases at the electronic wave functions, while our model yields it automatically. These
phases are of utmost importance for the calculation of spectra as we outlined in section 2.4.
The so-called|82〉 state (which is based on Davydov’s|D2〉 stateansatzfor high-frequency
oscillations coupled to lattice phonons) as defined in [71] is derived in detail in appendix A.
A comparison shows that it yields the same time evolution of the lattice and of the electron
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Figure 14. Kinetic energy of the lattice (solid lines, only for two time steps sizesτ ) together
with the error in total energy forT = 0 K (1E; dashed lines) as functions of time, using time
steps ofτ = 1 fs, 0.1 fs, 0.01 fs and 0.001 fs, calculated with the adiabatic model.

distribution as the exact classical solution, however, with different phases. Therefore this
state can be called a semi-classical one. Note that such findings are also of a more general
importance, because a similar type of state is widely used in Davydov soliton theory where
a similar discussion on exact special case solutions can be found in the literature [66, 67].

One could assume that a simple calculation of the potential energy of a chain as a
function of the displacement of the centre of a soliton might yield a good estimate of its
mobility. Thus we performed such calculations and in figure 16 we plot this potential energy
in units of K (kelvin) as a function of the position of the soliton centre for two different
values ofu0. Figure 16(a) indicates that for displacements of the soliton centre around the
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Figure 15. α-spin density as a function of timet and siten for the adiabatic model as described
in the text, calculated with four different time step sizes of (a)τ = 1 fs, (b) τ = 0.1 fs,
(c) τ = 0.01 fs and (d)τ = 0.001 fs, at the temperaturesT = 10 andT = 100 K.

centre of the chain only a negligible amount of energy is needed. However, since the forces
acting on the lattice due to temperature do not act in a coherent way but, rather, introduce
some disorder even in a small region around the chain centre they cannot drive the soliton
out of its equilibrium position. The disorder introduced by temperature thus should have as
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Figure 16. The potential energyE/kB (kB is Boltzmann’s constant) in K (kelvin) as a
function of the positionn (in lattice sites) of the centre of a soliton of the formui =
(−1)i+1u0 tanh[(n − i)/L] (half-width L given in lattice sites) in a chain of 51 units for
(K andA optimized for the respectively ideally dimerized chains) (a)u0 = 0.1 Å; L = 3;
small region around the centre of the chain (K = 16.9539 eV Å−2), (b) u0 = 0.1 Å;
L = 3 (K = 16.9539 eV Å−2, A = −5.676 88 eV Å−1), (c) u0 = 0.03 Å; L = 7
(K = 27.9580 eVÅ−2, A = −6.073 16 eVÅ−1).
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usual (Anderson localization) a localizing effect on the soliton. In figure 16(b) we show the
potential energy for larger distances of the soliton from the centre of the chain (site 26). The
dotted lines are drawn to guide the eye for the three temperatures considered by us. What
has to be noted is first of all that for an energy of 100 K the soliton mobility is somewhat
underestimated, because the potential barrier of 100 K corresponds just to a movement
from the centre of the chain up to site 45, while our simulations indicate that at 100 K the
soliton is able to reach the chain end (site 51). Further, a barrier of 10 K corresponds to a
displacement of the soliton to site 42, while clearly from our simulations as well as from
experiments we know that the soliton is still more or less immobile at this temperature.
At the intermediate value of the potential barrier of 50 K, the soliton mobility from such
an estimate would be more or less the same as for 100 K, which again overestimates it, a
behaviour which also shows up in simulation with the adiabatic model. In figure 16(c) we
show the corresponding potential foru0 = 0.03 Å, which is closer to the experimental one.
Here the situation is similar; however, now the overestimation of the mobility at 50 K is
reduced. From the plot one could estimate a mobility threshold at about 20 K in this case,
as reported earlier by Suet al [1]. In conclusion it seems to us that only our model yields
the correct estimate for soliton mobility, while the adiabatic one overestimates it at lower
temperatures.
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Appendix A. Connection with |Φ2〉 state

For the discussion of the|82〉 ansatzstate we have to rewrite first of all the SSH Hamiltonian
into a more familiar form by introduction of the usual creation and annihilation operators for
the lattice phonons which are of the same form as in the case of the Davydov Hamiltonian
and obey Bose commutation relations:

[Â, B̂] ≡ ÂB̂ − B̂Â
[b̂k, b̂

+
k′ ] = δkk′ [b̂+k , b̂

+
k′ ] = [b̂k, b̂k′ ] = 0. (A1)

For this purpose we rewrite first the Hamiltonian to get rid of the linear terms leading to
[71]

Ĥ ′ =
∑
n

{[β − (q̂n − q̂n+1)α]
∑
σ

(ĉ+nσ ĉn+1,σ + ĉ+n+1,σ ĉnσ )+
p̂2
n

2M
+ 1

2
K(q̂n − q̂n+1)

2} + C

qn(t) = un(t)+
[
n− 1

2
(N + 1)

]
A

K
− 1

N

∑
m

um(t = 0)
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C = −(N − 1)
A2

2K
β = β0− A

K
α (A2)

whereN is the number of sites in a chain. Theq̂n are displacement operators relative to
the minimum geometry of the lattice potential in (2). The one-electron SSH Hamiltonian is
then given as

Ĥ ′ =
∑
nσ

[
β +

∑
k

h̄ωkBnk(b̂k + b̂+k )
]
(ĉ+nσ ĉn+1,σ + ĉ+n+1,σ ĉnσ )+

∑
k

h̄ωk

(
b̂+k b̂k +

1

2

)
+ C.
(A3)

Separation of the constant term leads to

Ĥ ′ = Ĥ +D D = 1

2

∑
k

h̄ωk + C (A4)

and the gauge transformation

|9〉 = e−i/h̄( 1
2

∑
k h̄ωk+C)t |8〉 = e−i/h̄Dt |8〉. (A5)

Therefore

ih̄
∂

∂t
|8〉 = Ĥ |8〉 (A6)

with

Ĥ =
∑
nσ

[
β +

∑
k

h̄ωkBnk(b̂k + b̂+k )
]
(ĉ+nσ ĉn+1,σ + ĉ+n+1,σ ĉnσ )+

∑
k

h̄ωkb̂
+
k b̂k (A7)

whereB is given by

Bnk = α

ωk

√
1

2h̄ωkM
(Vn+1,k − Vnk) (A8)

ωk being the eigenfrequencies andVk the coefficient vector of the normal modek of the
decoupled (α = 0) lattice, i.e. they are the solutions of the eigenvalue problem

1

M
KVk = ω2

kVk

Knm = K[2(1− 1
2δn1− 1

2δnN)δnm − δm,n−1(1− δn1)− δm,n+1(1− δnN)]. (A9)

The translation mode (ω = 0) has to be excluded from the summations. The operators are
defined by

q̂n =
∑
k

√
h̄

2Mωk
Vnk(b̂

+
k + b̂k)

p̂n = i
∑
k

√
Mh̄ωk

2
Vnk(b̂

+
k − b̂k). (A10)

As in the so-called|D2〉 ansatzfor the treatment of Davydov soliton dynamics we can
start in our case from the|80〉 state (a more general state including quantum effects in
the lattice, which is discussed in detail in [71]) and drop the site and orbital indices at
the coherent state amplitudes. Note that in one-electron theories as used here it makes no
difference in the results whether we use a Slater determinant or a simple product built from
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one-electron states. Therefore asansatzfor the total wave function|8〉 we use the simple
product of the electronic wave function with a common coherent phonon state|β〉:

|8〉 = 1√
ν!

∑
P

(−1)P P̂

[ ν∏
j=1

|ϕj (j)〉
]
|β〉

|ϕj 〉 =
∑
n

cnj (t)ĉ
+
nj |0〉e

|β〉 = exp

{∑
k

[bk(t)b̂
+
k − b∗k (t)b̂k]

}
|0〉p. (A11)

Here the MO coefficientscnj (t) and the coherent state amplitudesbk(t) are the unknown
time dependent variables. As before thebk are defined with respect to the deviationsqn
from the equilibrium geometry of the lattice (see appendix A of [71]). With thisansatz
the lattice is treated semi-classically, but one obtains explicit equations of motion for the
MO coefficients of the electrons, in contrast to the adiabatic treatment, where the electrons
are assumed to follow the ions instantaneously. We start from the Lagrangian built with
the ansatzgiven in (A11) (wherej runs from here on over the spatial orbitals only unless
otherwise mentioned, andoj is an occupation number):

L = ih̄

2

∑
nj

oj (ċnj c
∗
nj − ċ∗nj cnj )Xj +

ih̄

2

∑
k

(ḃkb
∗
k − ḃ∗kbk)X

−
∑
n

{[
β +

∑
k

h̄ωkBnk(b
∗
k + bk)

]∑
j

oj cn+1,j c
∗
nj

+
[
β +

∑
k

h̄ωkBn−1,k(b
∗
k + bk)

]∑
j

oj cn−1,j c
∗
nj

}
Xj −

∑
k

h̄ωk|bk|2X (A12)

whereX andXj are given by

X =
∏
j

(∑
n

|cnj |2
)oj

Xj =
∏
j ′

(∑
n

|cnj ′ |2
)oj ′−δjj ′

= X

Nj

Nj =
∑
n

|cnj |2. (A13)

These terms as well as the normNj are constant in time as we will prove below.
Differentiation ofL with X andXj considered as variables as given in (A13) yields

together with

∂X

∂c∗nj
= oj cnj

∏
j ′

(∑
m

|cmj ′ |2
)oj ′−δjj ′

= oj cnjXj

∂Xj ′

∂c∗nj
= (oj − δjj ′)cnj

∏
j ′′

(∑
m

|cmj ′′ |2
)oj ′′−δj ′j ′′−δjj ′′

= (oj − δjj ′)cnjXjj ′ (A14)

the following terms:

d

dt

∂L

∂ċ∗nj
= − ih̄

2
[oj ċnjXj + oj cnjXj ]

∂L

∂ċ∗nj
= ih̄

2

{
oj ċnjXj +

∑
mj ′
oj ′(ċmj ′c

∗
mj ′ − ċ∗mj ′cmj ′)(oj − δjj ′)cnj

Xj

Nj ′

}
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+oj cnj
[

ih̄

2

∑
k

(ḃkb
∗
k − ḃ∗kbk)−

∑
k

h̄ωk|bk|2
]
Xj − Ajojcnj Ẋj

−Anojcn+1,jXj − An−1oj cn−1,jXj (A15)

where

Aj ≡
∑
mj ′

Am

Nj ′
(cm+1,j ′c

∗
mj ′ + c∗m+1,j ′cmj ′)(oj ′ − δjj ′) = A∗j

since
oj ′

oj
(oj − δjj ′) = (oj ′ − δjj ′)

An ≡
[
β +

∑
k

h̄ωkBnk(b
∗
k + bk)

]
= A∗n. (A16)

Therefore we obtain as equation of motion

ih̄oj ċnjXj = − ih̄

2
oj cnj Ẋj + Cjoj cnjXj + Anojcn+1,jXj + An−1oj cn−1,jXj (A17)

with the abbreviations

Cj = Aj − ih̄

2

∑
mj ′

1

Nj ′
(ċmj ′c

∗
mj ′ − ċ∗mj ′cmj ′)(oj ′ − δjj ′)−

ih̄

2

∑
k

(ḃkb
∗
k − ḃ∗kbk)

+
∑
k

h̄ωk|bk|2 = C∗j

Xjj ′ = Xj

Nj ′
= Xj ′

Nj
NjXj = X. (A18)

Thus we obtain finally

ih̄ċnj = − ih̄

2
cnj
Ẋj

Xj
+ Cjcnj + Ancn+1,j + An−1cn−1,j . (A19)

The time derivative of the norm is

ih̄Ṅj =
∑
n

[(ih̄ċnj )c
∗
nj − (−ih̄ċ∗nj )cnj ]. (A20)

Substitution of (A19) and its complex conjugate into (A20) yields (note thatCj andAn are
real numbers)

ih̄Ṅj = − ih̄

2
Nj
Ẋj

Xj
+ CjNj +

∑
n

[Ancn+1,j + An−1cn−1,j ]c
∗
nj

−
[

ih̄

2
Nj
Ẋj

Xj
+ CjNj +

∑
n

[Anc
∗
n+1,j + An−1c

∗
n−1,j ]cnj

]
= −ih̄Nj

Ẋj

Xj
. (A21)

The second equality holds, because
N−1∑
n=1

Anc
∗
n+1,j cnj =

N∑
n=2

An−1c
∗
nj cn−1,j

N∑
n=2

An−1c
∗
n−1,j cnj =

N−1∑
n=1

Anc
∗
nj cn+1,j . (A22)

Thus we arrive at

Ṅj = −Nj Ẋj
Xj
⇒ ṄjXj +NjẊj = d

dt
(NjXj ) = d

dt

(∏
j

N
oj
j

)
= Ẋ = 0
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X(t) = X(t = 0) = 1. (A23)

From this result follows

0= d

dt

(∏
j

N
oj
j

)
=
∑
j

oj Ṅj

(∏
j ′
N
oj ′−δjj ′
j ′

)
=
∑
j

oj ṄjXj ⇒
∑
j

ojNj Ẋj = 0. (A24)

Further we can rewrite our equations of motion to

ih̄ċnj = − ih̄

2

Ẋj

Xj
cnj + Cj(t)cnj +

∑
m

gnm(t)cmj

gnm(t) = An(t)δm,n+1(1− δnN)+ An−1(t)δm,n−1(1− δn1). (A25)

With this form of the equations we can show now that not only the product of the norms
of all orbitals, but also the norm of every individual orbital remains constant. This is most
easily done by performing the phase transformation

cnj = dnj exp

[
− i

h̄

∫ t

0
Cj(t

′) dt ′
]

(A26)

leading to

ih̄ḋnj = − ih̄

2

Ẋj

Xj
dnj +

∑
m

gnm(t)dmj = ih̄

2

Ṅj

Nj
dnj +

∑
m

gnm(t)dmj . (A27)

Therefore now each of our spin orbitals carried a phase

|ϕj 〉 =
∑
n

cnj (t)ĉ
+
nj |0〉e = e−i/h̄

∫ t
0 Cj (t

′) dt ′
∑
n

dnj (t)ĉ
+
nj |0〉e. (A28)

Since the total wave function is a linear combination of products of all occupied orbitals,
we have in spin orbital notation

|8〉 = 1√
ν!

∑
P

(−1)pP̂
ν∏
j=1

[
e−i/h̄

∫ t
0 Cj (t

′) dt ′
∑
n

dnj (t)ĉ
+
nj |0〉e

]
|β(t)〉 (A29)

where herej runs over the occupied spin orbitals only. The total phase factorγ resulting
from the above transformation thus is given by

γ =
∏
j

[e−i/h̄
∫ t

0 Cj (t
′) dt ′ ]oj =

∏
j

[e−i/h̄
∫ t

0 ojCj (t
′) dt ′ ] = e−i/h̄

∫ t
0 ojCj (t

′) dt ′ (A30)

where herej runs over the occupied spatial orbitals again. Now the integrand in this phase
factor can be computed in a rather simple way. The equations of motion (A25) yield

ih̄ċnj c
∗
nj = −

ih̄

2

Ẋj

Xj
|cnj |2+ Cj |cnj |2+

∑
m

gnmcmjc
∗
nj

−ih̄ċ∗nj cnj =
ih̄

2

Ẋj

Xj
|cnj |2+ Cj |cnj |2+

∑
m

g∗nmc
∗
mjcnj . (A31)

When we add these two equations and divide by 2, we obtain

ih̄

2
(ċnj c

∗
nj − ċ∗nj cnj ) = Cj |cnj |2+

1

2

∑
m

(gnmcmjc
∗
nj + g∗nmc∗mjcnj ). (A32)

With gnm as defined in (A25) we can write

ih̄

2
(ċnj c

∗
nj − ċ∗nj cnj ) = Cj |cnj |2+ An(cn+1,j c

∗
nj + c∗n+1,j cnj ) (A33)
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and therefore
ih̄

2

∑
nj ′

1

Nj ′
(ċnj ′c

∗
nj ′ − ċ∗nj ′cnj ′)(oj ′ − δjj ′)

=
∑
nj ′

1

Nj ′
[Cj ′ |cnj ′ |2+ An(cn+1,j ′c

∗
nj ′ + c∗n+1,j ′cnj ′)](oj ′ − δjj ′)

=
∑
j ′
(oj ′ − δjj ′)Cj ′ + Aj (A34)

where we used (A16) and the definition of the norm which is
∑

n |cnj (t)|2 = Nj(t). Thus
insertion of the above result into (A18) yields

Cj = −
∑
j ′
(oj ′ − δjj ′)Cj ′ − ih̄

2

∑
k

(ḃkb
∗
k − ḃ∗kbk)+

∑
k

h̄ωk|bk|2 (A35)

and therefore the integrand in the total phase factorγ is∑
j

ojCj = − ih̄

2

∑
k

(ḃkb
∗
k − ḃ∗kbk)+

∑
k

h̄ωk|bk|2. (A36)

Now we have, if thedj are orthonormal, i.e.d+i dj = δij holds:

cnj (t) = eiγj (t)dnj (t) γj (t) ≡ −1

h̄

∫ t

0
Cj(t

′) dt ′

⇒ Sij =
∑
n

cnic
∗
nj = ei(γj (t)−γi (t))

∑
n

dnid
∗
nj = ei(γj (t)−γi (t))δij = δij . (A37)

Therefore we must seek solutions of the system of equations

ih̄ḋnj −
∑
n

gnmdmj = ih̄

2

Ṅj

Nj
dnj Nj =

∑
n

d∗nj dnj . (A38)

For this purpose we solve the corresponding equations with vanishing right-hand side

ih̄ḋnj −
∑
n

gnmdnj = 0. (A39)

Having a solutiondnj (t) of (A39) we compute the time derivative of the normNj(t) of this
solution:

ih̄Ṅj (t) =
∑
n

[(ih̄ḋnj (t))d
∗
nj (t)− (−ih̄ḋ∗nj (t))dnj (t)]. (A40)

Substitution of (A39) into (A40) leads to

ih̄Ṅj (t) =
∑
nm

[gnm(t)dmj (t)d
∗
nj (t)− g∗nm(t)d∗mj (t)dnj (t)]

=
∑
nm

[gnm(t)− g∗mn(t)]d∗mj (t)d∗nj (t). (A41)

Thus, if the matrixg(t) is Hermitian we obtainNj(t) = 1 (for Nj(t = 0) = 1, as is the
case) for the solution of (A39). Then, since dNj(t)/ dt = 0, our solution of (A39) is also
solution of (A38), which we are looking for, with a conserved norm. For the matrixg(t)
we have from (A25) together with (A16)

gnm(t) = An(t)δm,n+1(1− δnN)+ An−1(t)δm,n−1(1− δn1)

An(t) =
{
β +

∑
k

h̄ωkBnk[b
∗
k (t)+ bk(t)]

}
= A∗n(t)
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⇒ gn,n+1 = An gn+1,n =
∑
m

gm,m−1δm,n+1 =
∑
m

Am−1δm,n+1 = An = gn,n+1

gn−1,n =
∑
m

gm,m+1δm,n−1 =
∑
m

Amδm,n−1 = An−1 = gn,n−1

⇒ g(t) = g+(t) (A42)

and thusg(t) is Hermitian, and solutions of (A39) are also solutions of (A38). Thus for
the derivation of the equations of motion for the coherent state amplitudes it is justified to
setX = Xj = Nj = 1 from the beginning.

Therefore the Euler–Lagrange equations for theb∗k together with (ν is again the number
of electrons in the system, which is constant in time)

Pnm =
∑
j

oj cnj c
∗
mj

∑
n

Pnn = ν (A43)

yield the equations of motion

ih̄ḃk = h̄ωk
[
bk +

∑
n

(BnkPn+1,n + Bn−1,kPn−1,n)

]
. (A44)

With the help of

Re [bk] =
∑
n

√
Mωk

2h̄
Vnkqn Im [bk] =

∑
n

√
1

2h̄Mωk
Vnkpn (A45)

(A44) can easily be shown to be equivalent to

ṗn = K(qn+1− 2qn + qn−1)+ 2αRe [Pn,n+1− Pn,n−1]. (A46)

From this we see that the dynamics of the lattice (without electron–phonon coupling) follow
from the classical equations of motion; however, in contrast to the adiabatic model the
dynamics of the electrons are taken explicitly into account. Note that (A46) is identical to
the lattice equations in the adiabatic case, since

2αRe [Pn,n+1− Pn,n−1] = −∂Eπ
∂qn

(A47)

if Eπ and P are determined by diagonalization of the Hückel matrix for geometry
{qn}, however, in the|82〉 case the MO coefficients are determined in a different way.
Temperature effects can be included in the same way as described in appendix F of [71],
by introduction of random forces and friction in the above equations in the same way as in
the classical case (see appendix F of [71]):

ṗn = K(qn+1− 2qn + qn−1)+ 2αRe [Pn,n+1− Pn,n−1] + Rn(t)− 0pn. (A48)

Thus after renamingdnj to cnj again we arrive at the final equations of motion:

ih̄ċnj = (β + En)cn+1,j + (β + En−1)cn−1,j (A49)

whereEn is given by

En =
∑
k

h̄ωkBnk(bk + b∗k ) = −α(qn − qn+1) (A50)

and thus we obtain

ih̄ċnj = [β − α(qn − qn+1)]cn+1,j + [β − α(qn−1− qn)]cn−1,j . (A51)

The conservation of total energy can be easily shown since we have a Hamiltonian system
with time independent Hamilton operator.
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With the equations of motion for the coherent state amplitudes we can also simplify our
integrand in the phase considerably:

ih̄

2

∑
k

(ḃkb
∗
k − ḃ∗kbk) =

∑
k

h̄ωk|bk|2+ 1

2

∑
n

(EnPn+1,n + En−1Pn−1,n) (A52)

and therefore∑
j

ojCj = − ih̄

2

∑
k

(ḃkb
∗
k − ḃ∗kbk)+

∑
k

h̄ωk|bk|2 = −1

2

∑
n

(EnPn+1,n + En−1Pn−1,n)

= −
∑
n

En Re [Pn+1,n]. (A53)

Thus we can write down our final state vector

|ψ〉 = 1√
ν!

e−i/h̄Dt ei/h̄
∫ t

0 ϑ(t
′) dt ′

∑
P

(−1)pP̂
ν∏
j=1

[∑
n

cnj ĉ
+
nj |0〉e

]
|β(t)〉

ϑ(t) = 1

2

∑
n

(EnPn+1,n + En−1Pn−1,n)

D = 1

2

∑
k

h̄ωk − (N − 1)
A2

2K

|β(t)〉 = e
∑

k [bk(t)b̂
+
k −b∗k (t)b̂k ] |0〉p (A54)

where herej runs over the occupied spin orbitals again.
Note that the expectation values of displacements and momenta derived from this state

are exactly the same as those calculated from the classical exact solution discussed above.
The same holds also for all expectation values of electronic operators with the state vector
at the same time both in the bra and the ket. However, expectation values with the state
at different times in the bra and the ket, respectively, as necessary in spectroscopy, would
yield different results when calculated with the two states. For example, the autocorrelation
function as explained above for the classical solution is given by

S(t) = 〈ψ(0) | ψ(t)〉 = e−i/h̄Dt ei/h̄
∫ t

0 ϑ(t
′) dt ′ 〈β(0) | β(t)〉〈1(0) | 1(t)〉 (A55)

with

〈β(0) | β(t)〉 = exp

{
− 1

2

∑
k

[|bk(0)|2+ |bk(t)|2− 2b∗k (0)bk(t)]
}
. (A56)

The situation this is somewhat similar to the case of Davydov’s solitons.

Appendix B.

Note that in our previous paper [71] some misprints occurred (author’s mistakes):
equation (B24) should read

D(b1, b2) = exp

[
− 1

2

∑
k

(|b1− b2|2− b+1 b2+ b+2 b1)

]
. (B24)

(B25) should read

D(b1, b2) = exp

{
− 1

2

∑
k

[|bnk1− bn+1,k1|2− (b∗nk1+ b∗mk2+ b∗lk3)(bn+1,k1+ bmk2+ blk3)
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+(bnk1+ bmk2+ blk3)(b
∗
n+1,k1+ b∗mk2+ b∗lk3)]

}
. (B25)

(B26) should read

Dn,n+1,j = exp

[
− 1

2

∑
k

(|bnkj − bn+1,kj |2− b∗nkj bn+1,kj + bnkj b∗n+1,kj )

]
. (B26)

(B27a) should read

D(b1, b2)=Dn,n+1,1 exp

{
+ 1

2

∑
k

[b∗nk1(bmk2+ blk3)+ (b∗mk2+ b∗lk3)(bn+1,k1+ bmk2+ blk3)

−bnk1(b
∗
mk2+ b∗lk3)− (bmk2+ blk3)(b

∗
n+1,k1+ b∗mk2+ b∗lk3)]

}
=Dn,n+1,1 exp

{
+ 1

2

∑
k

[(b∗nk1bmk2+ b∗mk2bn+1,k1)− (bnk1b
∗
mk2+ bmk2b

∗
n+1,k1)]

}
× exp

{
− 1

2

∑
k

[(b∗nk1blk3+ b∗lk3bn+1,k1)− (bnk1b
∗
lk3+ blk3b

∗
n+1,k1)]

}
.

(B27)

The first two lines of (B29) should read

Dn,n+1,j = exp

{
− 1

2

∑
k

[|bnkj − bn+1,k,j |2− b∗nkj bn+1,kj + bnkj b∗n+1,kj ]

}
D
mj ′
nj = exp

{
+ 1

2

∑
k

[b∗nkj bmkj ′ − bnkj b∗mkj ′ ]
}
. (B29)

Further (C46) should read

∂Dm,m+1,j ′

∂b∗nkj
=
[
bn+1,kj δmn − 1

2
bnkj (δmn + δm,n−1)

]
Dm,m+1,j δjj ′

∂Dm+1,mj ′

∂b∗nkj
=
[
bn−1,kj δn,m+1− 1

2
bnkj (δmn + δm,n−1)

]
Dm+1,m,j δjj ′ . (C46)

(C49) should read

∂

∂b∗nkj
D
m′j ′′
mj ′ =

[
+1

2
bm′kj ′′δnmδjj ′ − 1

2
bmkj ′δnm′δjj ′′

]
D
m′j ′′
mj ′

∂

∂b∗nkj
(D

m′j ′′
m+1,j ′)

∗ =
[
−1

2
bm′kj ′′δn,m+1δjj ′ + 1

2
bm+1,kj ′δnm′δjj ′′

]
(D

m′j ′′
m+1,j ′)

∗. (C49)

Then in the subsequent equations one has to realize that any occurringD
m′j ′′
mj ′ has to be

replaced by (Dm′j ′′
mj ′ )

∗.
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